Publications

Clear
Search
Category
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Research Paper

/

2024-07-06

TNFSF9 Is Associated with Favorable Tumor Immune Microenvironment in Patients with Renal Cell Carcinoma Who Are Treated with the Combination Therapy of Nivolumab and Ipilimumab

Combination therapy of nivolumab and ipilimumab (NIVO + IPI) for metastatic renal cell carcinoma (mRCC) has shown efficacy, but approximately 20% of patients experience disease progression in the early stages of treatment. No useful biomarkers have been reported to date. Therefore, it is desirable to identify biomarkers to predict treatment responses in advance. We examined the tumor microenvironment (TME)-related gene expression in mRCC patients treated with NIVO + IPI, between the response and non-response groups, using tumor tissues, before administering NIVO + IPI. In TME-related genes, TNFSF9 expression was identified as a candidate for the predictive biomarker. Its expression discriminated between the response and non-response groups with 88.89% sensitivity and 87.50% specificity (AUC = 0.9444). We further analyzed the roles of TNFSF9 in TME using bioinformatics from The Cancer Genome Atlas (TCGA) cohort. An adaptive immune response was activated in the TNFSF9-high-expression tumors. Indeed, T follicular helper cells, plasma B cells, and tumor-infiltrating CD8+ T cells were increased in the tumors, which indicates the promotion of humoral immunity due to enhanced T-B interactions. However, as the number of regulatory T cells (Treg) increased in the tumors, the percentage of dysfunctional T cells also increased. This suggests that not only PD-1 but also CTLA-4 inhibition may have suppressed Treg activation and improved the therapeutic effect in the TNFSF9 high-expression tumors. Therefore, TNFSF9 may predict the therapeutic efficacy of NIVO + IPI for mRCC and allow more appropriate patient selection.

More

Research Paper

/

2024-06-09

Comparison of genomic profiling of patient-matched primary colorectal and surgical resected distant metastatic (stage IV) colorectal carcinoma for drug actionability

It is often difficult to obtain adequate tissue for genomic study from distant metastases for assessment of targeted therapy in colorectal carcinomas. The study aims to explore the genomic differences between matched distant metastatic colorectal carcinomas (mCRC) and primary carcinoma using surgical specimens of both with adequate tissue. Thirty-four paired primary and distant metastatic colorectal carcinoma samples (liver, ovary, and lung) were obtained from surgical excisions (not small biopsies) and are microsatellite stable. They were subjected to DNA sequencing using comprehensive next-generation sequencing. This included mutation concordance analysis and mutational signature analysis. The mutation concordance analysis showed 49.6% shared mutations between primary and metastatic tumours, with 23.0% mutations exclusive to primary tumours and 27.4% mutations exclusive to distant metastases. While many patients with KRAS/BRAF mutations had shared mutations, two cases had unique KRAS mutations in the primary tumours only. Additionally, TMB (tumour mutational burden) analysis revealed that half of the TMB-high (≥7.5 mutations/Mb) metastatic colorectal carcinomas had a low TMB (<7.5 mutations/Mb) in the primary tumours. The mutational signature analysis identified de novo signatures consistent with known single base substitution patterns such as SBS11 (alkylation agents) and SBS30 (base excision repair deficiency) post-chemotherapy. To conclude, this study demonstrates significant genomic variations in resected distant metastasis when compared to primary colorectal carcinomas when adequate tissue is available. This finding underscores the importance of considering these differences and selecting tissue for mutation analysis in planning targeted and effective treatment strategies for mCRC.

More

Contact Our Experts

Explore the immense possibilities and promising future of precision medicine. Together, let us unlock the power of genomic testing and personalize cancer care for the most effective treatment.

Inquire

By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information.